RECTANGULAR COORDINATES: The location of a unique point represented as a "northing" (a distance north of an origin point of 0.0000) and an "easting" (a distance east of an origin point of 0.0000).

Rectangular coordinates are a pair of numbers written...
NORTHING.
EASTING
Each set of rectangular coordinates represents the location of a unique point as if was plotted on a grid.

OBJECTIVE: To calculate the polar coordinates between two given rectangular points. This is known as the "INVERSE" procedure.
 .

PROCEDURE: Use "INV." menu...
1.) N 1 SPC E 1 N E enter northing and easting of point 1
2.) N 2 SPC E 2 NE
3.) SWAP
4.)
5.) POL
6.) HMS

Repeat all steps for a new inverse.
To use already stored coordinates...

Continue inverse at step 3 above.
PRACTICE:

4,956.7500	6,565.3545
7,899.0025	10,234.5044
2,300.9040	1,945.3434
4,735.8765	7,234.0987
4,956.7500	1,945.3434
7,899.0025	7,234.0987
5,000.0000	6,565.3545
20,000.0000	10,234.5044

POLAR COORDINATES: The location of a unique point represented as a "bearing" or "azimuth" and a "distance" from a known set of rectangular coordinates.

Polar coordinates are used to determine the rectangular coordinates of said unique point from a given point.

OBJECTIVE: To calculate the rectangular coordinates of a unique point which is currently represented by polar coordinates from a given set of rectangular coordinates. This is known as the "TRAVERSE" procedure.
$\frac{\mathrm{N} 1}{\mathrm{E} 1} \quad$ BEARING or AZIMUTH and DISTANCE \quad N2?.

PROCEDURE: Use "TRV." menu...
1.) N SPC $E N E$ enter northing and easting
2.) 1 STASH
$\begin{array}{ll}\text { 3.) } & \mathrm{N} E \\ \text { 4.) } \mathrm{AZ} \text { SPC DIST } \mathrm{AZ} \mathrm{D}\end{array}$
5.) REC
6.$)$
7.) 2 STASH
store coordinates (point \#1 shown)
reassemble coordinates
enter azimuth (HMS) and distance
compute latitude and departure
compute new northing and easting
store new coordinates (point \#2 shown) Continue traverse at step 3 above.

To start traverse at already stored point...
1.) P FETCH $N E$ recall coordinates for point P Continue traverse at step 4 above

PRACTICE:

$\frac{5,000.0000}{10,000.0000}$	$A Z=85-25-05$	$D=2397.65^{\prime}$	
$2,525.7095$	$A Z=343-55-42$	$D=4100.95^{\prime}$	
$4,440.7622$			
$\frac{4,040.5550}{8,800.4012}$	$A Z=189-50-30$	$D=1977.34^{\prime}$	
$\frac{5,050.0000}{9,000.0700}$	$A Z=101-10-01$	$D=999.67^{\prime}$	

Key

RECTANGULAR COORDINATES: The location of a unique point represented as a "northing" (a distance north of an origin point of 0.0000) and an "easting" (a distance east of an origin point of 0.0000).

Rectangular coordinates are a pair of numbers written...
NORTHING.

Each set of rectangular coordinates represents the location of a unique point as if was plotted on a grid.

OBJECTIVE: To calculate the polar coordinates between two given rectangular points. This is known as the "INVERSE" procedure.
 .

PROCEDURE: Use "INV." menu...
1.) N1 SPC E1 N E enter northing and easting of point 1
2.) N 2 SPC E 2 NE
3.) SWAP
4.)
5.)
6.) HMS
enter northing and easting of point 2 swap the coordinates on the stack compute latitude and departure compute distance and azimuth (HR) convert form of azimuth (HMS)

Repeat all steps for a new inverse.
To use already stored coordinates...
1.) $P 1$
 recall coordinates for point P1 recall coordinates for point P2
Continue inverse at step 3 above.
PRACTICE:

| $\frac{4,956.7500}{7,899.0025}$ | $\frac{A Z=55-26-33 \quad D=2,835.87^{\prime}}{N 55-26-33 E}$ | $\frac{6,565.3545}{10,234.5044}$ |
| :--- | :--- | :--- | :--- |
| $\frac{2,300.9040}{4,735.8765}$ | $\frac{A Z=98-06-01 \quad D=2,523.40^{\prime}}{S 81-53-59 E}$ | $\frac{1,945.3434}{7,234.0987}$ |
| $\frac{4,956.7500}{7,899.0025}$ | $\frac{A Z=192-27-03 \quad D=3,083.94^{\prime}}{\boldsymbol{S 1 2 - 2 7 - 0 3} W}$ | $\frac{1,945.3434}{7,234.0987}$ |
| $\frac{5,000.0000}{20,000.0000}$ | $\frac{A Z=279-06-24 \quad D=9,890.16^{\prime}}{N 80-53-36 ~ W}$ | $\frac{6,565.3545}{10,234.5044}$ |

POLAR COORDINATES

POLAR COORDINATES: The location of a unique point represented as a "bearing" or "azimuth" and a "distance" from a known set of rectangular coordinates.

Polar coordinates are used to determine the rectangular coordinates of said unique point from a given point.

OBJECTIVE: To calculate the rectangular coordinates of a unique point which is currently represented by polar coordinates from a given set of rectangular coordinates. This is known as the "TRAVERSE" procedure.
$\frac{\mathrm{N} 1}{\mathrm{E} 1} \quad$ BEARING or AZIMUTH and DISTANCE $\quad \frac{\mathrm{N} 2 ?}{\mathrm{E} 2 ?}$.

PROCEDURE: Use "TRV." menu...
1.) $N \mathrm{SPC} E \mathrm{NE} \quad$ enter northing and easting
2.) 1 STASH
$\begin{array}{ll}\text { 3.) } & \mathrm{NE} \\ \text { 4.) } & \mathrm{AZ} \text { SPC DIST } \mathrm{AZ} \mathrm{D}\end{array}$
4.) $A Z \quad \mathrm{SPC}$ DIST AZ D
5.) REC
6.)
7.) 2 STASH
store coordinates (point \#1 shown)
reassemble coordinates
enter azimuth (HMS) and distance
compute latitude and departure
compute new northing and easting
store new coordinates (point \#2 shown) Continue traverse at step 3 above.

To start traverse at already stored point...
1.) P FETCH $N E$ recall coordinates for point P Continue traverse at step 4 above

PRACTICE:

5,000.0000	$A Z=85-25-05 \quad D=2397.65^{\prime}$	5,191.5358
10,000.0000		12,389.9874
2,525.7095	$A Z=343-55-42 \quad D=4100.95^{\prime}$	6,466.3787
4,440.7622		3,305.4572
4,040.5550	$A Z=189-50-30 \quad D=1977.34^{\prime}$	2,092.3138
8,800.4012		8,462.4223
5,050.0000	$A Z=101-10-01 \quad D=999.67{ }^{\prime}$	4,856.3955
9,000.0700		9,980.8133

